

ORTHOPAEDIC SURGERY

AESCULAP[®] Columbus[®] Revision

1 | CONTENTS

Columbus® Revision - WELL EQUIPPED FOR THE FUTURE

Due to today's growing demographic situation, revision operations will continue to play a significant role in the future.

The special challenges of these implant procedures require surgeons to pay maximum attention. The Columbus® Revision system has been designed to optimally support surgeons in providing proper treatment for their patients.

As a part of the Columbus[®] group of implants, the Columbus[®] Revision system offers manifold options. With two different levels of stability of the polyethylen gliding surfaces for the revision, the patients' specific ligament needs can be addressed. The cemented and cementless extension stems of different lengths and diameters allow for a stable anchorage of the implant; the offset is initiated close to the joint line. This way the implant can be positioned as desired without involuntary cortical impingement inside the diaphysis.

An extensive product portfolio including various implant sizes, augments, stem extensions and gliding surfaces gives the surgeon the flexibility to adapt the treatment to the patient. In addition, the optional AS Advanced Surface version can reduce the release of metal ions and improve wear properties, which was demonstrated during in-vitro experiments (1). Precise implementation of the planning in the operating room is essential for the success of the procedure. The Columbus[®] Revision instruments are intended to achieve just that, serving as the surgeon's extension within the surgery theatre.

1	CONTENTS	2
2	Columbus [®] SYSTEM OVERVIEW	4
3	PREOPERATIVE PLANNING	5
4	OVERVIEW OF SURGICAL STEPS	6
5	EXPLANTATION	8
6	TIBIA PREPARATION	9
7	FEMUR PREPARATION	19
8	PATELLA PREPARATION	31
9	ASSEMBLING THE FINAL IMPLANTS	33
10	IMPLANTING THE FINAL COMPONENTS	35
11	Columbus [®] Revision TRIAL COMPONENTS	37
12	CEMENTING TECHNIQUE	38
13	WOUND CLOSURE	39
14	OVERVIEW OF INSTRUMENTS	40
15	OPTIONAL INSTRUMENTS	50
16	SAW BLADES	51
17	IMPLANT DIMENSIONS AND DESIGN	52
18	IMPLANT MATRIX	59
19	LITERATURE	63

2 | Columbus[®] SYSTEM OVERVIEW

3 | PREOPERATIVE PLANNING

In order to achieve a successful treatment with the Columbus[®] Revision knee system, an in-depth analysis of any bone defects and if applicable, existing soft tissue dysfunctions, must be performed. If the primary endoprosthesis failed, it is mandatory to identify the causes of the failure in order to avoid repeat errors. For this purpose, it is recommended to consult the pre- and postoperative X-ray images. Further parameters to ensure optimal results include:

- Restoration of the joint line
- Proper axis alignment
- Functionality of the extensor mechanism
- Bone-sparing removal of the primary endoprosthesis
- Functional stability
- Evaluation of the soft tissue condition.

For the purposes of preoperative planning, Columbus[®] Revision X-ray templates are available for X-ray image analysis to help determine the following:

- The angle between the anatomical and mechanical
- Femoral axis;
- Resection heights;
- The size of the implants;
- The entry points of the intramedullary alignment;
- The necessity and dimensions of augments and extension stems.

Indications

Severe knee problems that cannot be alleviated through other therapies:

- Degenerative arthrosis
- Rheumatoid arthritis
- Post-traumatic arthrosis
- Symptomatic knee joint instability
- Knee-joint ankylosis
- Severe knee-joint deformities
- Revision and replacement surgeries

The Columbus[®] Revision knee system can be used in cases of insufficient collateral ligaments thanks to its varus/valgus stabilizing high constraint (HC) gliding surface. With the use of the medium constraint (MC) gliding surface, no varus/valgus stabilization takes place.

With both versions, the box-peg design transfers forces from one implant component to the other. To distribute this force also into the intramedullary canal, AESCULAP[®] strongly recommends using the Columbus[®] Revision Knee System exclusively with tibial and femoral extension stems.

Experience with the system has shown that a defect reconstruction with the available femoral and tibial augments up to and including defect sizes of the AORI* classification type IIB is recommendable.

Further information on indications and contraindications can be found in the instruction manual TA012000.

* Anderson Orthopaedic Research Institute

4 | OVERVIEW OF SURGICAL STEPS

6

9

Define femur size. Resection of distal femur

Femoral box preparation by rasp. Trial box impaction

7

8

Resection of femoral 4-in-1 geometry

Resection of femoral box geometry

Fix femoral box and stem

11

10

5 | EXPLANTATION

Set joint line reference

The joint line positioner is placed on the distal contact plate and screwed down with screw A. On the anterior side of the femur, a reference marking is made, for example, at the level where the primary femoral shield ends proximally. In this position, the joint line positioner is fixed using screw B. This will remain tightend during the remaining course of the surgery.

Remove all primary implants.

NOTE

The availability of the implants required according to preoperative planning is ensured using the implant matrix (see annex).

6 | TIBIA PREPARATION

This surgical guide describes the Tibia First technique. However, if the Femur First technique is used, the step "Femur Preparation" on page 19 will be performed first.

The entry point for the step drill and the IM alignment rod or the reamers is determined by means of X-ray images (AP distance 1/3 to 2/3 or via a tibial trial plateau).

With the reamers or the IM alignment rod, the intramedullary canal is reamed as deeply as possible with the long reamer until a stable anchorage for precise alignment of the axis is achieved. Following the tibial resection, it is reamed again to the required depth with the desired diameter in order to achieve pressfit in the case of a cementless stem fixation or, in the case of a cemented variant, to make room for the cement mantle. The reamers have markings for the different stem lengths. The depth reference is always the back side of the implant without augments. Since bone is removed during proximal resection, it may be necessary to increase the depth so that the stem can be inserted correctly. For cemented stems, a cement mantle of at least 1 mm is required.

NOTE

Cementless tibial stem implants have an excess size of 1 mm compared to the reamer. Reamers and implants are conically shaped up to 5.2 cm from the reamer tip. Therefore, the depth of the preparation is crucial.

WARNING

Too aggressive pressfit could lead to pain at the tip of the stem. Therefore, achieving a less aggressive glide fit is recommended.

6 | TIBIA PREPARATION

Intramedullary Alignment

The IM alignment system, including the tibial cutting block, is completely assembled and attached to the reamer. The posterior lug (N) should be at the same level here as the reamer marking.

Option:

Using the alignment control rods, which are placed inside the bore of the slide rail, the position of the leg axis can be controlled.

1. Version:

The resection height is determined by means of the stylus in the cutting slot adjusted to the desired resection height. Fix this position by tightening the lateral fixation screw at the IM slide rail. The position of the saw incision can be controlled with the incision control plate.

2. Version:

The posterior lug of the IM slide rail should be at the same level as the marking in the reamer stem (resection = 0 mm). The incision level can be selected via the scale of the IM vertical connecting rod by pushing the button on the back of the IM socket (see arrow).

3. Version:

The complete IM alignment system including the tibial cutting block is attached to the reamer. The cutting depth gauge in the cutting slot is used for distal repositioning up to contact with the tibial plateau. Fix this position by tightening the fixation screw at the IM slide rail. The incision depth is now determined by distally moving the IM connecting rod.

Assembly

- 1. Push IM slide rail A into IM socket B 2. Turn lever on the IM connecting rod
- turn lever on the IM connecting to to the 11 o'clock (OPEN) position and mount tibia cutting block C
 Close the lever by turning it
- clockwise
- 4. Push the button at the IM socket and insert IM connecting rod D

A: NQ648R IM slide rail, B: NQ649R IM socket, C: NQ650R/NQ651R Tibia cutting block (Left/Right), D: NQ647R IM connecting rod 10 The tibial cutting block is fixed in the desired position via two parallel pins without head and a convergent headed pin.

The alignment system is removed. To do this, the lever of the IM connecting rod is turned counterclockwise to the 11 o'clock position. Remove the IM connecting rod ventrally from the cutting block and proximally from the reamer.

6 | TIBIA PREPARATION

Tibial Resection

The tibial resection is performed using a 1.27 mm thick saw blade in the upper cutting slot.

Option:

Additional slots provide the option of making step cuts for the 5, 10 and 15 mm tibia augments. The position in which the augment ends sagittally in the center should be noted.

NOTE

To minimize the risk of tibial fracture, the horizontal cut should be made before the sagittal cut. The sagittal cut should not be deeper than the horizontal cut surface.

NOTE

For certain anatomies and defect situations, the unilateral use of augmentation with the Tibia Plus sizes may be necessary. This creates a step between the augment and tibial implant both anteriorly and posteriorly. This must be taken into account when assessing possible soft-tissue irritation.

Following the tibial resection, it is reamed again to the required depth with the desired diameter in order to achieve pressfit in the case of a cementless stem fixation or, in the case of a cemented variant, to make room for the cement mantle.

NOTE

The reamers have markings for the different stem lengths. The reference of the marking, even when using augments, is always the backside of the metal trial tibial plateau. The marking on the reamer includes the stem length and height of the tibial box.

Extension and flexion gap measurement with spacer blocks

Extension and flexion gaps can be measured with spacer blocks. For improved stability after an augment cut, a unilateral trial plate can be attached to the bottom side. In this case, a spacer block with a height of at least 18 mm without the femoral cut spacer should be used since this will represent the minimum space required by the implants (PE including tibial plateau = 10 mm; femur distal = 9 mm, dorsal = 8 mm). In the case of asymmetry, a ligament release on the tighter side may be considered. However, if the asymmetry is caused by a bone defect, this is not a viable option.

Optionally, after the distal femur resection of 9 mm, the joint stability can be simulated by additional mounting of the femoral cut spacer. In this case, a spacer block of the required PE height is used.

Extension and flexion gap measurement with distractor

Extension and flexion gaps are measured medially and laterally with the distractor. This measurement is performed on the mounted trial tibial plateau with trial augments clicked into the bottom.

In the case of asymmetry, a ligament release on the tighter side may be considered. However, if the asymmetry is caused by a bone defect, this is not a viable option. Afterwards, an additional measurement needs to be performed. If the results are satisfactory, the values are recorded.

The material thickness of the trial tibial plateau is 5 mm.

NOTE

Distractor and spreader are not included in the standard set.

6 | TIBIA PREPARATION

Determining the offset with a trial stem

The trial tibial plateau that best fits the bone in ML and AP is selected. The ML positioner is connected with the required trial stem.

NOTE

The small anterior attachment lug of the ML positioner must be turned to the open position (the engraved marking must be in the anterior position) in order to avoid bending it during introduction.

If necessary, trial augments of the required height and size are clicked under the respective side of the trial tibial plateau.

The trial tibial plateau, including clicked trial augments if applicable, is placed on top of the tibia. Then the ML positioner is introduced. The attachment lug of the ML positioner is tightened in an optimal ML, AP and rotation position of the trial tibial plateau. This ML value is recorded, and the trial plateau is fixed with two headed pins.

The position of the leg axis can be controlled via the alignment control rod, which is inserted into the handle.

The continuous tibia offset is as follows:

- $TO/TO + = \pm 4 \text{ mm}$
- T1-T5 = ± 6 mm

Determining the offset with a reamer

The reamer is introduced into the tibia canal again. The trial tibial plateau that best fits the bone in ML and AP is selected. The trial tibial plateau, including clicked trial augments if applicable, is placed on top of the tibia. Then the ML positioning chimney is introduced over the reamer. The attachment lug of the ML positioning chimney is tightened in an optimal ML, AP and rotation position of the trial tibial plateau.

This ML value is recorded, and the trial plateau is fixed with two headed pins.

NOTE

The small anterior attachment lug of the ML positioning chimney must be turned to the open position (the engraved marking must be in the anterior position) in order to avoid bending it during introduction.

The position of the leg axis can be controlled via the alignment control rod, which is inserted into the handle.

6 | TIBIA PREPARATION

In the correct ML, AP and rotational position, the trial tibial plateau is attached with two short headed pins. Then the handle, the ML positioning chimney/ML positioner and the reamer are removed.

The two outer markings indicate the positions where the augments will end medially (A), as a reference for the sagittal cuts. The central marking (B) indicates the center of the trial plateau.

The selected trial plateau is placed flush on the tibia resection, and the rotation is determined with the help of the EM rod placed through the holder. The transition from the medial to the central third of the anterior tuberosity and the second toe axis of the leg serve as reference points for the rotation. These two reference points often are not congruent with the mechanical axis of the tibia. The surgeon should take into account the rotation with respect to the tubercle in order to maintain the alignment of the extensor mechanism. The plateau is fixed inside the marked holes with short headed pins.

Another option is the assembly of the tibial and femoral trial implant with the matching trial gliding surface. Through flexion and extension movements in combination with slight rotations, the tibial plateau will move into its natural position under the trial femur. This position is marked anteriorly with an electric knife exactly where the plateau displays a centered anterior laser marking. Carefully evaluate the stability of the extensor mechanism before accepting this "free float" alignment of the tibial baseplate.

NOTE

The Columbus[®] tibial plateau has a symmetric shape. Therefore, it is not possible to achieve a 100% tibial bone coverage with correctly set tibial rotation. However, an overhang should be avoided (see illustration on the left).

After the ML positioner or reamer has been removed, the box preparation guide and the drill guide are mounted on the trial tibial plateau.

Using the stop drill, two holes merging into each other are drilled to the stop by repositioning the drill guide by 180°. The result is a bore with binocular geometry.

NOTE

In order to avoid perforation of the tibial cortex by the tibial keel in small tibial sizes with limited metaphyseal space and large bone loss, restoration of the tibial joint line through augmentation is preferable to higher PE. This applies both to the preparation and to the final implant.

The ML rasp for the stem sleeve is connected to the trial stem in the required dimension.

It is impacted through the box preparation guide to the stop, then rotated by 180° and once again impacted to the stop.

6 | TIBIA PREPARATION

The osteodenser (A) identical in size to the trial tibial plateau is selected and connected to the tibial stem connector (B). For this purpose, the tibial stem connector with the cylindrical part is introduced from the bottom into the osteodenser and slightly fastened with the fastening screw from the top in such a way that ML movement is still possible. Then the required trial stem (C) is screwed to the tibial stem connector. The osteodenser, which is attached to the handle, is then pushed over the osteodenser assembly.

The osteodenser assembly is impacted to the stop into the trial tibial plateau through the box preparation guide. It is important to ensure that the trial stem fastening screw is only loosely tightened so that the stem can center itself in the ML. Then lift the box preparation guide and remove the holder of the osteodenser anteriorly. Then tighten the fastening screw for offset fixation and remove the pins from the trial tibial plateau.

A: Osteodenser, B: NQ833R tibial stem connector, C: Trial stem

7 | FEMUR PREPARATION

If the Femur First Technique is used, femoral preparation is initiated as described below.

Determining Femur Size

The size of the femur is determined with the help of the femoral size determination gauges. The gauges indicate the respective AP and ML measurements. Further markings on the instrument indicate the respective available distal and posterior femoral segments. With an introduced reamer the AP offset of the stem can be preassessed.

Size	F 1	F2	F3	F4	F5	F6	F7
T0/0+							
T1/1+							
T2/2+							
T3/3+							
T4/4+							
T5							

COMPATIBILITY Columbus® Revision TIBIA WITH Columbus® Revision FEMUR WITH HC/MC GLIDING SURFACES

Compatible

Compatible, but not recommended by AESCULAP®

Not compatible

7 | FEMUR PREPARATION

Intramedullary Femoral Alignment

The entry point for the step drill in the distal femur can be determined using X-ray images. Drilling is performed at the selected angle, taking into account the femoral curvature and other patient-specific aspects.

Femoral stem offset: AP: stepless $\pm 4 \text{ mm}$

With the reamers or the IM alignment rod, the intramedullary canal is reamed as deeply as possible with the long reamer until a stable anchorage for precise axis alignment is achieved. Following the distal femur resection, it is reamed again to the required depth with the desired diameter in order to achieve pressfit in the case of a cementless stem fixation revision or, in the case of a cemented variant, to create space for the cement mantle. The reamers have markings for the different stem lengths. The depth reference is always the backside of the implant without augments. Since bone is removed during distal resection, it may be necessary to increase the depth so that the stem can be inserted correctly. For cemented stems, a cement mantle of at least 1 mm is required.

NOTE

Cementless femur stem implants have an excess size of 1 mm compared to the reamer. Reamers and implants are conically shaped up to 5.6 cm from the reamer tip. Therefore, the depth of the preparation is crucial.

WARNING

Too aggressive pressfit could lead to pain at the tip of the stem. Therefore, achieving a less aggressive glide fit is recommended.

Distal Femur Resection

The cutting block support for distal cutting block B is mounted on IM alignment system C. Distal femur cutting block A is pushed into the support and screwed tight in the neutral position. Additionally, handle D is connected to the IM alignment system.

A: Distal femur cutting block NQ701R, B: Cutting block support NQ703R, C: Alignment system NQ702R, D: Handle NQ474R

Distal Femur Resection with Joint Line Positioner

If used, the joint line positioner is inserted into the neutral cutting slot. The desired angle between the anatomical leg axis and the mechanical axis for the leg side to be operated is set and fixed (A). Then the alignment system is slid onto the reamer until the tip of the joint line positioner reaches the marking determined during the first surgery step. Fix this position with screw (B).

If needed, the recorded joint line can now be repositioned. To do this, the repositoning holes on the cutting block or the scale on the joint line positioner can be used.

7 | FEMUR PREPARATION

Distal Femur Resection with Incision Control Plate

If used, the cutting depth gauge can be placed into the neutral cutting slot. The desired angle between the anatomical leg axis and the mechanical axis for the leg side to be operated is set and fixed (A). Then the alignment system is pushed onto the reamer with the cutting depth gauge until distal contact is made with the bone. Fix this position with screw (B).

After removing the IM alignment system, the cutting block is moved by 2 mm proximally for a cleanup cut.

The cutting depth gauge, the joint line positioner and the alignment system [loosen screws A, B, and C] are removed distally. The reamer can remain inside the femur canal for alignment of the additional cuts.

The distal femoral cut is performed in the selected resection direction. If necessary, resection is also performed for the distal femoral augments in the corresponding cutting slot.

Following the distal resection, it is reamed again to the required depth with the desired diameter in order to achieve pressfit in the case of a cementless stem fixation or, in the case of a cemented variant, to create space for the cement mantle. The reamers have markings for the different stem lengths. The reference of the marking, even when using augments, is always the metal backside of the trial femur.

NOTE

The implant matrix (see appendix) ensures that the required implants, as identified during planning of the required femur size, are available.

7 | FEMUR PREPARATION

AP and Rotational Alignment

If a resection for distal femoral augments was performed, trial augments with analogous dimensions must be screwed to the backside of the 4-in-1 cutting block to ensure the correct distal distance of the interior femoral geometry to be sawed.

The 4-in-1 cutting block is pushed onto the reamer with the inserted angular sleeve and the screwed on handles for rotational alignment. The 4-in-1 cutting block is set to the correct AP and rotational position. To avoid anterior undercutting of the femoral cortex, the cutting depth gauge is inserted into the anterior cutting slot for verification.

By tightening the distal fastening screw, the cutting block is fixed in the defined anterior/posterior position. The value that is now obtained serves only as an initial, approximate offset estimate. The definite value will later be obtained from the trial femur with which the trial femoral stem is connected.

By tightening the horizontal fastening screw, the cutting block is fixed in the defined rotational position.

The flexion gap can now be measured with the trial gliding surface, or optionally with spreader and distractor, and can be compared with the extension gap. With an unbalanced flexion and extension gap, corrections should be undertaken on the femoral side (change of femur size, change of distal augmentation).

NOTE

The dorsal geometry of the 4-in-1 cutting block corresponds exactly to the dimensions of the definitive femoral implant. This measurement is also performed on the mounted trial tibial plateau with trial augments clicked into the bottom, if applicable. The values are recorded.

NOTE

The PE size is always chosen to match the size of the tibia.

With two long headless pins, the cutting block is fastened through the holes in the handles in the defined rotational position. Additional stability can be achieved with a long headless pin, which is fastened in the cutting block through the distal anchoring bore. The holes are marked with L (left leg)/R (right leg). Select the side to be operated on. For space reasons, only the handle opposite to the everted patella may be used.

Option:

The setting of the femoral rotation can also be performed by using a trial gliding surface at the required height and the 4-in-1 cutting block. To do this, the flexion gap must be filled with the trial gliding surfaces to the point where the ligaments are taut.

NOTE

In cases of insufficient collateral ligaments, this technique can cause an incorrect rotation of the 4-in-1 cutting block. Therefore the rotation must also be referenced with the epicondyles.

7 | FEMUR PREPARATION

It must be verified that the cutting block is in direct contact with the distal femur, and that the distal trial augments are securely fastened, if used.

Size assessment of the anterior femoral shield

Option:

The size and position of the femoral implant can be simulated by anteriorly applying the applicable femoral control plate.

4-in-1 Resection

The four femoral resections are performed in the following order: 1. Anterior parallel cut

- 2. Posterior parallel cut (including augment cut if required)
- 3. Posterior chamfer cut
- 4. Anterior chamfer cut

The correct offset adapter is screwed onto the selected trial femur with optional posterior/distal trial augments with the applicable angle $(5^{\circ}/7^{\circ}$ for cementless stems; 6° for cemented stems) and the correct side L or R facing upwards. Then the trial femur is pushed on the reamer until full contact is made with the bone.

In this position, the trial femur is fastened anteriorally with two headed pins. Afterwards, the AP offset adapter and the reamer are removed.

AESCULAP® Columbus® Revision

7 | FEMUR PREPARATION

Femur Box Preparation

The resection of the interior medial and lateral side of the femoral box is performed with the oscillating jigsaw and a narrow saw blade. If necessary, remaining bone pieces are removed with a chisel.

To ensure an optimal fit of the femoral stem, the medial and lateral internal geometry is prepared with the rasp. This is guided by the trial stem connected to it. The rasp is impacted twice up to the wide, distal end.

Option:

The proximal box cut can also be performed with a box chisel. To do this, the box chisel guide needs to be mounted to the trial femur. Then the depth limiter is inserted into the slot on the box chisel that matches the femur size group. The box chisel is then impacted up to the stop.

Assembling the trial femoral box:

The selected trial femoral stem is screwed to the adapter with the correct angle and in the needed length. Then it is inserted into the proximal guide of the trial femoral box and loosely screwed in from the distal side to allow clearance in the AP for self-centering. The trial box holder is connected to the handle and inserted distally with the laterally-positioned spring ball anteriorly.

This stem assembly is inserted into the guide of the trial femoral box. The configured trial femoral box is completely impacted into the trial femur.

use long adapter with long trial stemuse short adapter with short trial stem

7 | FEMUR PREPARATION

The trial box is secured by tightening the medially-positioned fastening screw in the trial femur.

The trial stem, which is now self-aligned in AP, is fastened into this position by tightening the intercondylar fastening screw.

Option:

A trial PE gliding surface of the required size and height as well as a trial PS peg can be selected and placed on the trial tibial plateau. Now, the joint stability during flexion and extension can be checked. Depending on the result, a higher or lower PE sliding surface is selected.

8 | PATELLA PREPARATION

The thickness of the patella is measured using the caliper. This thickness should not be exceeded after implantation of the patella implant. The level of bone resection is calculated. A minimum thickness of the remaining patella bone should not be less than 12 mm.

The resection level is adjusted by turning the resection depth wheel to the planned level of remaining patellar bone thickness. Then the patella is fixed into the patella resection clamp.

The resection is performed through the cutting slot with a 1.27 mm thick saw blade.

AESCULAP® Columbus® Revision

8 | PATELLA PREPARATION

The patella resection clamp is removed. The patella drill/impaction clamp is set onto the osteotomized patellar surface choosing a medialized position to recreate the resected apex of the articular surface; the trial patella can be placed on top of the drill guide in order to check its position to the medial rim and appropriate positioning in the superior and inferior direction.

The peg holes for the implant are drilled through the holes with the \emptyset 6 mm drill until the stop is reached. The size of the patella is established with the corresponding trial patella implant.

9 | ASSEMBLING THE FINAL IMPLANTS

Assembling the Final Implants

The required final implants are selected and made available based on the result of the trial repositioning.

NOTE

Please note: To apply the required torque, all implants that are tightened with a defined torque (tibial/femoral stem, PE fastening screw) must be subjected to the torque three times.

NOTE

It is of advantage to have two persons perform the implant assembly. To avoid slippage when tightening to the torque, pressure should be applied to the torque wrench from above.

NOTE

To protect the sterile pad from being pierced during implant assembly, an abdominal cloth should be used as a pad.

Tibia Assembly

If needed, the tibial augments are screwed under the tibial plateau without defined torque.

The counterholder for the tibial stem fixation is placed on the tibial implant from the bottom and fastened by turning the handle.

Then the torque wrench is connected to the adapter. This is used to tighten the tibial extension stem with 20 Nm, under consideration of the mediolateral position of the trial tibial stem.

AESCULAP® Columbus® Revision

9 | ASSEMBLING THE FINAL IMPLANTS

Femur Assembly

The distal and posterior femoral augments are screwed tightly onto the femoral implant with the screwdriver without defined torque, if needed.

Sequence:

1. Distal augments

2. Posterior augments

For the posterior augments, the spherical head or the short end of the cranked wrench should be used. The AP stem position of the explanted trial stem serves as reference for the assembly of the final femoral implant.

The torque wrench is connected to the adapter. Then the femoral stem nut is pushed into the box top of the femoral implant. Then the femoral stem is mounted with the right alignment and AP position and prefastened tightly.

The counterholder is attached to the femoral stem, which is then tightened with the torque wrench with 27 Nm.

To fasten the cementless stems, the counterholder is positioned with its small slots on the fins of the stem and then tightened.

To fasten cemented stems, the counterholder is positioned in the indentations of the stem and then tightened.

10 | IMPLANTING THE FINAL COMPONENTS

Preparation

The tibial plateau holder is inserted into the tibial implant, spread apart until it securely holds the implant. This position is secured by tightening the fastening screw A. Then the handle is attached for impaction.

The femoral insert is inserted into the femur holder. The two grippers are pushed apart and guided into the lateral recesses of the femoral implant. In this position, fastening screw B is tightened and the implant is set. Then the handle is attached for impaction.

After the implants have been assembled and are fixed in the holders, the cementation can be started. Please also review the notes regarding the cementation technique on page 38 and in the brochure O61802 "AESCULAP[®] Implant Fixation". Depending on defect size, stem length and type of extension stems, the amount of cement may need to be adjusted.

10 | IMPLANTING THE FINAL COMPONENTS

Sequence of implantation:

- Tibial Implant
- Femur Implant
- PE gliding surface
- Patella

The tibial implant is introduced in the predefined rotational and slope position with the tibial plateau holder and then impacted with the tibial impactor. Excess cement residues must be removed to avoid third-body wear. Then the femoral implant is introduced in the predefined rotational and extension/flexion position with the femoral holder. Then it can be further impacted with the femoral impactor. Here too, excess cement residues must be removed. When introducing the implant, it is possible that cement residues may enter the PS box. These must also be carefully removed.

NOTE

It is recommended to use a trial gliding surface for hardening the bone cement. This way, the range of motion and joint stability can be checked once again before the type and thickness of the final gliding surface is selected.

The final PE gliding surface is initially inserted into the tibial plateau with the posterior retaining clips in a slanted position. With the tibial impactor, it is impacted anteriorly so that the two anterior clips lock into the recesses. When the cement is completely hardened, the PE gliding surface is fastened with the included locking screw. To do this, the torque wrench with mounted adapter is turned clockwise until the torque limiter is audibly released.

The patella is implanted using the patella drill/impaction clamp and the concave plastic cap, which allows good transmission of forces during the cement hardening process and at the same time protects the patella implant against damage.

11 | Columbus[®] Revision TRIAL COMPONENTS

12 | CEMENTING TECHNIQUE

- Regardless of what fixation method is utilized it is critical that correct techniques are employed in order to avoid complications and early failure. Also, even with accurate cuts it is important to ensure that components are fully seated, as it is easy for this to be obscured when cementing is taking place. Varus/valgus alignment can be significantly affected by unequal medial-lateral cement mantles and poorly seated components and there can be a tendency to place femoral components in relatively flexed positions if specific care is not taken.
- It should also be noted that when definitive components are cemented in, they may prove more stable and seat better than the trials, which are often a little loose. It is therefore worthwhile to recheck the balancing and stability at this point so that further adjustments can be made if necessary. It has been possible to relate poor cementing techniques to early and continuous component migration, which in turn is of positive prognostic significance when predicting aseptic loosening so proper attention to the cementation steps must be taken (2).
- Preparation of the bony surfaces and cancellous bone should be performed with pulsatile type lavage with the knee under a pressure tourniquet. This step allows for well-fitting cement

penetration and interlocking to the bony prepared surfaces and also removes bone debris that can serve as third body particles that increase polyethylene wear after surgery (3, 4). The surfaces should be properly dried prior to cementation and appropriate exposure of all bony surfaces achieved (5, 6). All of the surfaces should be pressurized for optimal cement penetration. Emphasizing the importance of effective cementation of the posterior femoral condylar surfaces is also recommended since it can have a major effect on the longevity of the fixation of the femoral implant (7). A further point worth noting is that if holding the knee out in full extension while cement is hardening is used to compress components down and possibly improve cement intrusion.

Care should be taken to completely remove all excess cement that protrudes from the implant bone interface. Any remnants of overhanging cement can impinge on surrounding soft tissue or can provide a source of debris that can serve as a generator of third body wear and may contribute to the demise of the fixation earlier than expected (8). Further recommendations for cementation technique are published in the scientific information brochures "Aesculap Implant Fixation in TKA", order number 061802 and BonOs[®] R and BonOs[®] R Genta, order number 065002.

13 | WOUND CLOSURE

- After cement polymerization and removal of all cement excess, thoroughly irrigate the joint. If a tourniquet is used, hemostasis is achieved after its deflation.
- Close soft tissue in the normal layered fashion.

AESCULAP® Columbus® Revision

14 | OVERVIEW OF INSTRUMENTS

Instruments	Page 41
Optional instruments	Page 50
Sawblades	Page 51

Art. Nr.	Description	Container recommended	Lid	Height of tray incl. lid
NQ600	Columbus® Revision F Instrumentation (consisting of):			
NQ601	Columbus® Revision F Set General Instruments	JK444	JK489	114 mm
NQ602	Columbus® Revision F Set Manual Femur Instruments	JK444	JK489	114 mm
NQ603	Columbus® Revision F Set Manual Tibia Instruments	JK444	JK489	114 mm
NQ604	Columbus® Revision F Set Femur Preparation	JK444	JK489	114 mm
NQ605	Columbus® Revision F Set Tibial Trial Gliding Surfaces	JK442	JK489	84 mm
NQ606	Columbus® Revision F Set Femoral Trial Components - left	JK442	JK489	84 mm
NQ607	Columbus® Revision F Set Femoral Trial Components - right	JK442	JK489	84 mm
NQ608	Columbus® Revision F Set Tibial Trial Augments	JK444	JK489	114 mm
NQ609	Columbus® Revision F Set Stem Preparation Cemented	JK444	JK489	114 mm
NQ610	Columbus® Revision F Set Stem Preparation Cementless	2 x JK442	2 x JK489	84 mm
NQ612	Columbus® Revision F Set Tibia Preparation Size 0	JK442	JK489	84 mm
NS709	IQ Patella Preparation	JK444	JK489	119 mm
Option:				
NQ594	OrthoPilot® TKR – Navigation Columbus® Revision, passive	JK442	JK489	84 mm

If a Columbus[®] PS implant is revised, the NE358R torx screwdriver to loosen the PE fixation screw must be ordered separately too.

If a Columbus[®] CR Femur with corresponding CR/DD/ UC PE gliding surface and Columbus[®] Revision tibial plateau are to be implanted, the corresponding Columbus[®] Primary trial femur or the femur of this side to be operated on, and the stop drill for the femoral pegs, must be ordered separately too.

To measure the ligament tension with a spreader, it must be ordered separately.

Please check if your implants and instruments, provided by the AESCULAP[®] loan service, are complete and correspond with your preoperative planning.

X-RAY TEMPLATES

Item No.	Name
NQ292	Set of X-ray Templates (incl. axis planning), scale 1.10:1
NQ293	Set of X-ray Templates (incl. axis planning), scale 1.15:1

NQ601 | Columbus[®] Revision F SET GENERAL INSTRUMENTS

TRAY INSERT FOR NQ601

AESCULAP® Columbus® Revision

NQ602 | Columbus® Revision F SET MANUAL FEMUR INSTRUMENTS

TRAY INSERT FOR NQ602

Femoral trial	augments distal —
2 x NQ740	F1-F3 5 mm
2 x NQ741	F1-F3 10 mm
2 x NQ742	F4-F7 5 mm
2 x NQ743	F4-F7 10 mm
2 x NQ744	F4-F7 15 mm

-	Femoral trial	augments posterior
	2 x NQ745	F1-F3 5 mm
	2 x NQ746	F1-F3 10 mm
	2 x NQ747	F4-F7 5 mm
	2 x NQ748	F4-F7 10 mm
	2 x NQ749	F4-F7 15 mm

NQ603 | Columbus® Revision F SET MANUAL TIBIA INSTRUMENTS

TRAY INSERT FOR NQ603

NQ604 | Columbus® Revision F SET FEMUR PREPARATION

NQ606 | Columbus® Revision F SET FEMORAL TRIAL COMPONENTS - LEFT

NQ607 | Columbus[®] Revision F SET FEMUR PROBEKOMPONENTEN RECHTS

AESCULAP® Columbus® Revision

NQ608 | Columbus® Revision F SET TIBIAL TRIAL AUGMENTS

NQ610 | Columbus® Revision F SET STEM PREPARATION - CEMENTLESS

AESCULAP® Columbus® Revision

NQ612 | Columbus® Revision F SET TIBIA PREPARATION SIZE TO

NS709 | IQ PATELLA PREPARATION

NQ594 | OrthoPilot[®] TKR – NAVIGATION Columbus[®] Revision, PASSIVE INSTRUMENTS

15 | OPTIONAL INSTRUMENTS

GENERAL

NP609R distractor clamp

NE750R Femur/tibia distractor

NM640 Force controlled spreader set

NE150R leg positioner for TKA, NE153R fixation frame

Pin set (NP742R, NP743R, NP748R, NP749R, NP750R)

STORAGE OF OPTIONAL INSTRUMENTS

NQ1429R Storage of optional instruments, small, lid JA455R

NE1029R Storage of optional instruments, small, lid JA415R

NOTE

For the optional trays we recommend the following containers and lids: NQ1429R: container JK442, cover JK489

NE1029R: container JK342, cover JK389

16 | SAW BLADES

System	Item No.	Width	Thickness	Saw Blades 👖 steril 🗵
AESCULAP [®] Acculan Length 75 mm	GE231SU	9 mm	1.27 mm	
	GE233SU	13.5 mm	1.27 mm	1
AESCULAP [®]	GE236SU	13 mm	1.27 mm	
Length 90 mm	GE241SU	19 mm	1.27 mm	
	GE246SU	23 mm	1.27 mm	
AESCULAP [®] Acculan Length 100 mm	GE249SU	19 mm	1.27 mm	
Stryker	GE330SU	13 mm	1.27 mm	
System 2000, System 6-8 Length 90 mm	GE331SU	19 mm	1.27 mm	1,27
Length 90 mm	GE332SU	25 mm	1.27 mm	
DePuy Synthes Trauma Recon System Battery Power Line II Length 90 mm	GE323SU	13 mm	1.27 mm	
Zimmer Biomet Universal Length 90 mm	GE326SU	25 mm	1.27 mm	
Conmed Mpower 2	GE327SU	13 mm	1.27 mm	
Length 90 mm	GE329SU	25 mm	1.27 mm	

For a complete overview of all available saw blades with AESCULAP[®] coupling, see our Burrs & Blades catalog 017599.

System	Saw blade for jigsaw 75/10/1.0/1.2 mm	Saw blade for jigsaw 75/12/1.0/1.2 mm
Acculan		
	GC769R	GC771R

AESCULAP® Columbus® Revision

17 | IMPLANT DIMENSIONS AND DESIGN

TIBIA IMPLANT

Dimensions in mm

Size	ТО	T0+	T1	T1+	T2	T2+	T3	T3+	T4	T4+	T5
ML	62	62	65	65	70	70	75	75	80	80	85
AP	41	44	43	46	45	49	48	52	51	55	56
ML wing	37	37	39	39	42	42	45	45	48	48	51
ML box	24	24	28	28	28	28	28	28	28	28	28

11 sizes

- Seating for tibia extension stems
- Offset:
- $TO/TO + = \pm 4 \text{ mm},$
- $T1-T5 = \pm 6 mm$
- Flexion angle 130°
- Symmetrical plateau design
- Cemented

TIBIA EXTENSION STEMS, CEMENTED

Dimensions in mm

Length		Diameter	
52	10	15	10
92	12	15	10

Stem profile

- Cylindrical
- Polished
- With an asymmetrical "collar" for increased stability
- Three longitudinal grooves to avoid the risk of embolism

TIBIA EXTENSION STEMS, CEMENTLESS

Dimensions in mm

Length	Diameter									
92	11	10	10	1 /	15	10	17	10	10	20
132		12	13	14	15	16	17	18	19	20

Stem profile

- 3° conical up to 5.2 cm from the stem tip
- Corundum radiatedWith an asymmetrical
- With an asymmetrical "collar" for increased stability
- 10 longitudinal grooves
 (Wagner profile)

TIBIAL AUGMENTS

Dimensions in mm

Size	TO	T1	T2	T3	T4	T5
AP	40	42	44	47	51	56
ML	25	26	29	31	34	36

- Augments in heights of 5, 10 and 15 mm
- Screwed in the bottom
- Anatomic medial or lateral design
- Cement pockets: 1 mm deep

MEDIO-LATERAL TAPERING WITH TIBIAL AUGMENTS

Dimensions in mm

Columbus [®] Revision tibial augments	Tibia 0/0+	Tibia 1/1+	Tibia 2/2+	Tibia 3/3+	Tibia 4/4+	Tibia 5
Original ML Width	62	65	70	75	80	85
With two tibial augments 5 mm	58	61	66	71	76	81
With two tibial augments 10 mm	54	57	62	67	72	77
With two tibial augments 15 mm	50	53	58	63	68	73

ANTERO-POSTERIOR TAPERING WITH TIBIAL AUGMENTS

Dimensions in mm

Columbus® Revision tibial augments	Tibia 0/0+	Tibia 1/1+	Tibia 2/2+	Tibia 3/3+	Tibia 4/4+	Tibia 5
Original AP Width	41/44	43/46	45/49	48/52	51/55	56
With two tibial augments 5 mm	40	42	44	47	51	56
With two tibial augments 10 mm	40	42	44	47	51	56
With two tibial augments 15 mm	37	39	41	44	48	53

NOTE

For certain anatomies and defect situations, the unilateral use of augmentation with the Tibia Plus sizes may be necessary. This creates a step between the augment and tibial implant both anteriorly and posteriorly. This must be taken into account when assessing possible soft-tissue irritation.

AESCULAP® Columbus® Revision

17 | IMPLANT DIMENSIONS AND DESIGN

FEMUR IMPLANTAT

Dimensions in mm

Size	ML	AP	Box	Hight	Width
F1	56	50	34	19	25.5
F2	59	53	37	20.5	25.5
F3	62.5	56.5	40	22	25.5
F4	66.5	60.5	43.5	22	25.5
F5	71	65	47.5	22	25.5
F6	76	70	52	22	25.5
F7	82	75.5	57	22	25.5

3.6 cm

- Seven sizes, left/right
- Bone cuts identical to Columbus[®] Primary
- Hyperextension 4°
- Flexion angle 130°
- Cemented

FEMUR EXTENSION STEMS, CEMENTED

Dimensions in mm

Length		Diameter		
77	10	1 5	10)-
157	12	15	18	X

Stem Profil

- Valgus angle: 6°
- ML offset: Neutral AP offset: +- 4 mm
- 3° conically shaped up to 3.6 cm from the stem tip
- Polished
- 4 longitudinal grooves to avoid the risk of embolism
- Valgus angle: 5° / 7°
- AP offset: +- 4 mm
- 3° conically shaped up to 5.6 cm from the stem tip
- Corundum radiated
- Ten longitudinal grooves (Wagner profile)

Femoral stem nut

FEMUR EXTENSION STEMS, CEMENTLESS

Dimensions in mm

Length				Dia	ame	ter			
117	10	10	1.4	1 Г	10	17	10	10	20
177	12	13	14	15	16	17	18	19	20

FEMUR AUGMENTS

		distal			posterior			
	5 mm	10 mm	15 mm	5 mm	10 mm	15 mm		
F1	х	х		х	х			
F2	х	Х		Х	х			
F3	х	Х		Х	Х			
F4	х	Х	х	Х	Х	Х		
F5	х	Х	х	Х	х	Х		
F6	х	Х	Х	Х	Х	Х		
F7	Х	Х	Х	Х	Х	Х		

- Distal augments for F1 F3: 5, 10 mm
- Distal augments for F4 F7: 5, 10 and 15 mm
- Dorsal augments for F1 F3: 5, 10 mm
- Dorsal augments for F4 F7: 5, 10 and 15 mm
- Augments are screwed to the femoral component
- 1 mm cement pockets in the augment

PATELLA

Dimensions in mm

	Patella P1	Patella P2	Patella P3	Patella P4	Patella P5
D Patella x H	Ø 26 x 7	Ø 29 x 8	Ø 32 x 9	Ø 35 x 10	Ø 38 x 11

AESCULAP® Columbus® Revision

17 | IMPLANT DIMENSIONS AND DESIGN

PE GLIDING SURFACE MEDIUM CONSTRAINT (MC) DESIGN

Dimensions in mm

Size	10	12	14	16	18	20	24	28	32
T0/0+ - T1/1+	Х	х	Х	Х	Х	Х	х		
T2/2+ - T3/3+	Х	х	Х	Х	х	х	х	х	
T4/4+ - T5	х	х	Х	Х	х	х	х	х	х

PE GLIDING SURFACE HIGH CONSTRAINT (HC) DESIGN

Dimensions in mm

Size	10	12	14	16	18	20	24	28	32
T0/0+ - T1/1+	Х	х	х	Х	Х	Х	Х		
T2/2+ - T3/3+	Х	Х	Х	Х	Х	Х	Х	Х	
T4/4+ - T5	х	х	х	х	х	х	х	х	Х

NOTE

The PE size is always chosen to match the size of the tibia.

- Rotational freedom +- 5°
- Securing in the tibial plateau with four retaining clips
- Including locking screw
- (AS coated)

- Varus/valgus stability +- 2°
- Rotational freedom +- 3°
- Securing in the tibial plateau with four retaining clips
- Including locking screw (AS coated)

COMPATIBILITY Columbus® Revision TIBIA WITH Columbus® Revision FEMUR WITH HC/MC GLIDING SURFACES

Not compatible

Tightening torque information:

- 27 Nm for femur extension stems
- 20 Nm for tibia
- extension stems
- 10 Nm for PE locking screw

MATERIAL OVERVIEW

- 3 UHMWPE
- 4 PEEK-OPTIMA[™] (LT1)
- 5 Ti6Al4V

CoCrMo (casting alloy)	Cobalt chromium molybdenum casting alloy to ISO 5832-4
CoCrMo (forge alloy)	Cobalt chromium molybdenum casting alloy to ISO 5832-12
UHMWPE	Ultra-high molecular weight polyethylene to ISO 5834-2
PEEK-OPTIMA [™] (LT1)	Medicinal polyether ether ketones (Invibio)
Ti6Al4V	Titanium aluminum vanadium forge alloy to ISO 5832-3

NOTES

18 | Columbus[®] Revision IMPLANT MATRIX – FEMORAL COMPONENTS

FEMUR, CEMENTED

Variant:	F1	F2	F3	F4	F5	F6	F7
Links CoCr	NR001K	NR002K	NR003K	NR004K	NR005K	NR006K	NR007K
Links AS	NR001Z	NR002Z	NR003Z	NR004Z	NR005Z	NR006Z	NR007Z
Rechts CoCr	NR011K	NR012K	NR013K	NR014K	NR015K	NR016K	NR017K
Rechts AS	NR011Z	NR012Z	NR013Z	NR014Z	NR015Z	NR016Z	NR017Z

FEMUR EXTENSION STEMS, CEMENTED 6°

Variant [mm]:	77	157	77	157	77	157
	Ø 12 mm		Ø 15 mm		Ø 18 mm	
F1-F7 CoCr	NR291K	NR294K	NR292K	NR295K	NR293K	NR296K
F1-F7 AS	NR291Z	NR294Z	NR292Z	NR295Z	NR293Z	NR296Z

FEMUR EXTENSION STEMS, CEMENTLESS, $5^{\circ}/7^{\circ}$

Variant [mm]:	117	177	117	177	117	177
	Ø 12	: mm	Ø 13	mm	Ø 14 mm	
F1-F7 5° Neut CoCr	NR402K	NR432K	NR403K	NR433K	NR404K	NR434K
F1-F7 5° Neut AS	NR402Z	NR432Z	NR403Z	NR433Z	NR404Z	NR434Z
F1-F7 7° Neut CoCr	NR502K	NR532K	NR503K	NR533K	NR504K	NR534K
F1-F7 7° Neut AS	NR502Z	NR532Z	NR503Z	NR533Z	NR504Z	NR534Z
	Ø 15	5 mm	Ø 16	mm	Ø 17	mm
F1-F7 5° Neut CoCr	NR405K	NR435K	NR406K	NR436K	NR407K	NR437K
F1-F7 5° Neut AS	NR405Z	NR435Z	NR406Z	NR436Z	NR407Z	NR437Z
F1-F7 7° Neut CoCr	NR505K	NR535K	NR506K	NR536K	NR507K	NR537K
F1-F7 7° Neut AS	NR505Z	NR535Z	NR506Z	NR536Z	NR507Z	NR537Z
	Ø 18	mm	Ø 19	mm	Ø 20	mm
F1-F7 5° Neut CoCr	NR408K	NR438K	NR409K	NR439K	NR410K	NR440K
F1-F7 5° Neut AS	NR408Z	NR438Z	NR409Z	NR439Z	NR410Z	NR440Z
F1-F7 7° Neut CoCr	NR508K	NR538K	NR509K	NR539K	NR510K	NR540K
F1-F7 7° Neut AS	NR508Z	NR538Z	NR509Z	NR539Z	NR510Z	NR540Z

FEMUR STEM NUT	Ca .
Variant:	Neutral
F1-F7 CoCr	NR400K
F1-F7 AS	NR400Z

18 | Columbus[®] Revision IMPLANT MATRIX – FEMORAL COMPONENTS

PATELLAE	WITH P4	36x10	
THREE PEO	SS		
	P1	P2	P3
Variant:	Ø 26 x 7	Ø 29 x 8	Ø 32 x 9
F1-F7	NX041	NX042	NX043
	P4	P5	
Variant:	Ø 35 x 10	Ø 38 x 11	
F1-F7	NX044	NX045	

TORQUES FOR IMPLANT ASSEMBLY

Femur extension stems	27 Nm
Tibia extension stems	20 Nm
Locking screw for PE gliding surface	10 Nm

COMPATIBILITY Columbus® Revision TIBIA WITH Columbus® Revision FEMUR WITH HC/MC GLIDING SURFACES

X

Compatible

Compatible, but not recommended by AESCULAP®

Not compatible

		FEMORAL AUGME WITH SCREW	NTS DISTAL		FEMORAL AUGME WITH SCREW	NTS POSTERIOR	
	Variant:	5 mm	10 mm	15 mm	5 mm	10 mm	15 mm
	F1 CoCr	NR461K	NR471K	-	NR561K	NR571K	-
	F1 AS	NR461Z	NR471Z	-	NR561Z	NR571Z	-
	F2 CoCr	NR462K	NR472K	-	NR562K	NR572K	-
	F2 AS	NR462Z	NR472Z	-	NR562Z	NR572Z	-
ř	F3 CoCr	NR463K	NR473K	-	NR563K	NR573K	-
	F3 AS	NR463Z	NR473Z	-	NR563Z	NR573Z	-
	F4 CoCr	NR464K	NR474K	NR484K	NR564K	NR574K	NR584K
	F4 AS	NR464Z	NR474Z	NR484Z	NR564Z	NR574Z	NR584Z
	F5 CoCr	NR465K	NR475K	NR485K	NR565K	NR575K	NR585K
	F5 AS	NR465Z	NR475Z	NR485Z	NR565Z	NR575Z	NR585Z
	F6 CoCr	NR466K	NR476K	NR486K	NR566K	NR576K	NR586K
	F6 AS	NR466Z	NR476Z	NR486Z	NR566Z	NR576Z	NR586Z
	F7 CoCr	NR467K	NR477K	NR487K	NR567K	NR577K	NR587K
	F7 AS	NR467Z	NR477Z	NR487Z	NR567Z	NR577Z	NR587Z

18 | Columbus[®] Revision IMPLANT MATRIX – *TIBIA COMPONENTS*

TIBIA, CEMENTED

6	Variant:	T0	T0+	T1	T1+	T2	T2+	T3	T3+	T4	T4+	T5
and a	CoCr	NR070K	NR068K	NR071K	NR072K	NR073K	NR074K	NR075K	NR076K	NR077K	NR078K	NR079K
	AS	NR070Z	NR068Z	NR071Z	NR072Z	NR073Z	NR074Z	NR075Z	NR076Z	NR077Z	NR078Z	NR079Z

TIBIA EXTENSION STEMS, CEMENTED

	Ø 12 mm		Ø 15	Ø 15 mm		Ø 18 mm	
Variant:	52 mm	92 mm	52 mm	92 mm	52 mm	92 mm	
T0-T5 CoCr	NR191K	NR194K	NR192K	NR195K	NR193K	NR196K	
TO-F5 AS	NR191Z	NR194Z	NR192Z	NR195Z	NR193Z	NR196Z	

TIBIA EXTENSION STEMS, CEMENTLESS

	Ø 11	mm	Ø 12	2 mm	Ø 13	mm	Ø 14	mm	Ø 15	mm
Variant:	92 mm	132 mm								
T0-T5 CoCr	NR171K	NR181K	NR172K	NR182K	NR173K	NR183K	NR174K	NR184K	NR175K	NR185K
TO-T5 AS	NR171Z	NR181Z	NR172Z	NR182Z	NR173Z	NR183Z	NR174Z	NR184Z	NR175Z	NR185Z
	Ø 16	mm	Ø 17	′ mm	Ø 18	mm	Ø 19	mm	Ø 20	mm
Variant:	92 mm	132 mm								
TO-T5 CoCr	NR176K	NR186K	NR177K	NR187K	NR178K	NR188K	NR179K	NR189K	NR180K	NR190K
TO-T5 AS	NR1767	NR1867	NR1777	NR1877	NR1787	NR1887	NR1797	NR1897	NR1807	NR1907

TORQUES FOR IMPLANT ASSEMBLY

Femur extension stems	27 Nm
Tibia extension stems	20 Nm
Locking screw for PE gliding surface	10 Nm

18 | Columbus[®] Revision IMPLANT MATRIX – *TIBIA COMPONENTS*

PE GLIDING SURFACE MEDIUM CONSTRAINT WITH LOCKING SCREW AS COATED

	Ч

Variant:	10 mm	12 mm	14 mm	16 mm	18 mm	20 mm	24 mm	28 mm	32 mm
T0/0+	NR100M	NR101M	NR102M	NR103M	NR104M	NR105M	NR106M	-	-
T1/1+	NR110M	NR111M	NR112M	NR113M	NR114M	NR115M	NR116M	-	-
T2/2+	NR120M	NR121M	NR122M	NR123M	NR124M	NR125M	NR126M	NR127M	-
T3/3+	NR130M	NR131M	NR132M	NR133M	NR134M	NR135M	NR136M	NR137M	-
T4/4+	NR140M	NR141M	NR142M	NR143M	NR144M	NR145M	NR146M	NR147M	NR148M
T5	NR150M	NR151M	NR152M	NR153M	NR154M	NR155M	NR156M	NR157M	NR158M

PE GLIDING SURFACE HIGH CONSTRAINT WITH LOCKING SCREW AS COATED

	Variant:	10 mm	12 mm	14 mm	16 mm	18 mm	20 mm	24 mm	28 mm	32 mm
	T0/0+	NR600M	NR601M	NR602M	NR603M	NR604M	NR605M	NR606M	-	-
	T1/1+	NR610M	NR611M	NR612M	NR613M	NR614M	NR615M	NR616M	-	-
	T2/2+	NR620M	NR621M	NR622M	NR623M	NR624M	NR625M	NR626M	NR627M	-
	T3/3+	NR630M	NR631M	NR632M	NR633M	NR634M	NR635M	NR636M	NR637M	-
	T4/4+	NR640M	NR641M	NR642M	NR643M	NR644M	NR645M	NR646M	NR647M	NR648M
	T5	NR650M	NR651M	NR652M	NR653M	NR654M	NR655M	NR656M	NR657M	NR658M

TIBIAL AUGMENTS RM/LL WITH SCREWS

TIBIAL AUGMENTS RL/LM WITH SCREWS

	Variant:	5 mm	10 mm	15 mm	5 mm	10 mm	15 mm
5	T0 CoCr	NR040K	NR041K	NR042K	NR240K	NR241K	NR242K
SI	TO AS	NR040Z	NR041Z	NR042Z	NR240Z	NR241Z	NR242Z
0	T1 CoCr	NR044K	NR045K	NR046K	NR244K	NR245K	NR246K
	T1 AS	NR044Z	NR045Z	NR046Z	NR244Z	NR245Z	NR246Z
	T2 CoCr	NR048K	NR049K	NR050K	NR248K	NR249K	NR250K
0	T2 AS	NR048Z	NR049Z	NR050Z	NR248Z	NR249Z	NR250Z
0"	T3 CoCr	NR052K	NR053K	NR054K	NR252K	NR253K	NR254K
	T3 AS	NR052Z	NR053Z	NR054Z	NR252Z	NR253Z	NR254Z
	T4 CoCr	NR056K	NR057K	NR058K	NR256K	NR257K	NR258K
	T4 AS	NR056Z	NR057Z	NR058Z	NR256Z	NR257Z	NR258Z
	T5 CoCr	NR060K	NR061K	NR062K	NR260K	NR261K	NR262K
	T5 AS	NR060Z	NR061Z	NR062Z	NR260Z	NR261Z	NR262Z

19 | LITERATURE

- Reich J, Hovy L, Lindenmaier HL, Zeller R, Schwiesau J, Thomas P, Grupp TM. Präklinische Ergebnisse beschichteter Knieimplantate für Allergiker. Orthopäde. 2010 Mai;39(5): 495-502.
- (2) Amirfeyz R, Bannister G. The effect of bone porosity on the shear strength of the bone-cement interface. Int. Orthop. 2009 Jun;33(3):843-6.
- (3) Seeger JB, Jaeger S, Bitsch RG, Mohr G, Rohner E, Clarius M. The effect of bone lavage on femoral cement penetration and interface temperature during Oxford unicompartmental knee arthroplasty with cement. J Bone Joint Surg Am. 2013 Jan 2;95(1):48-53.
- (4) Schlegel UJ, Puschel K, Morlock MM, Nagel K. An in vitro comparison of tibial tray cementation using gun pressurization or pulsed lavage. 2014 May;38(5):967–71.
- (5) Norton MR, Eyres KS. Irrigation and suction technique to ensure reliable cement penetration for Total Knee Arthroplasty. J Arthroplasty. 2000 Jun;15(4):468–74.

- British Orthopaedic Association and British Association for Surgery of the Knee. Knee Replacement: a guide to good practice: London: British Orthopaedic Association, 1999; Revised Aug 2006, Nov 2012.
- (7) Vaninbroukx M, Labey L, Innocenti B, Bellemans J. Cementing the femoral component in total knee arthroplasty: which technique is the best? Knee. 2009 Aug;16(4):265-8.
- (8) De Baets T, Waelput W, Bellemans J. Analysis of third body particles generated during Total Knee Arthroplasty: is metal debris an issue? Knee. 2008 Mar;15(2):95-7.

AESCULAP[®] – a B. Braun brand

Aesculap AG | Am Aesculap-Platz | 78532 Tuttlingen | Germany Phone +49 7461 95-0 | Fax +49 7461 95-2600 | www.bbraun.com

BonOs: OSARTIS GmbH | Lagerstraße 11-15 | 64807 Dieburg | Germany

The main product trademark "AESCULAP" and the product trademarks "Columbus" and "OrthoPilot" are registered trademarks of Aesculap AG.

"BonOs" is a registered trademark of OSARTIS GmbH.

"PEEK-OPTIMA" is a trademark of Victrex plc or its group companies.

Subject to technical changes. All rights reserved. This brochure may only be used for the exclusive purpose of obtaining information about our products. Reproduction in any form partial or otherwise is not permitted.